본문 바로가기

KTN 칼럼

[고대진] 수는 어디서 시작되는가?

페이지 정보

작성자 최고관리자
문학 댓글 0건 작성일 24-07-26 12:24

본문

고대진 작가
고대진 작가

◈ 제주 출신

◈ 연세대, 워싱턴대 통계학 박사

◈ 버지니아 의과대학 교수, 텍사스 대학 , (샌안토니오) 교수, 현 텍사스 대학 명예교수

◈ 미주 문학, 창조 문학, 미주 중앙일보 신춘문예를 통해 등단

◈ 무원 문학상, 미주 가톨릭문학상

◈ 에세이집 <순대와 생맥주>



무(無) 혹은 '0', 즉 '아무것도 없는 것'은 무엇인가? 있는 것일까? 없는 것일까? 이것은 오래전부터 철학자들이 골똘히 생각해왔던 주제다. 오랫동안, 이 '아무것도 없는 것'에는 이름도 없었다. 고대 그리스에선 없는 것을 어떻게 나타낼 수 있단 말인가 하고 0을 숫자로 여기지 않았다고 한다. 이 '아무것도 없는 것'이 존재한다고 생각하고 처음으로 0에 이름을 붙여 숫자로 도입한 기록은 7세기 인도의 수학자 브라마굽타가 쓴 천문학책이다. 우주가 무(無)에서 생겨났고, 그 크기가 무한하다고 믿는 힌두교. 그 영향을 받아 무(無)와 무한을 연구하는 것이 신의 가르침을 아는 일이라 생각하는 인도에서는 0의 개념을 브라마굽타 훨씬 이전부터 계산에 사용하고 있었다고 한다. 

현대 수학에서는 '0'을 수의 기원으로 삼는다. '1이 모여서 된 것이 수이고 만물은 수다'라는 그리스 수학과는 엄청 다른 출발이다. 영화 <사운드 오브 뮤직>에서 나온 노래가 생각난다. 마리아(줄리 앤드루스)가 폰트랩(크리스토퍼 플러머)과 사랑을 속삭이는 장면에서 “아무것도 없는 것에서는 아무것도 나오지 않아 (Nothing comes from nothing)”라고 부르는 노래. 언젠가 내가 좋은 일을 했었기에 이렇게 사랑하는 당신을 만날 수 있었을 거라는 노래이다. 하지만 수의 세계에서는 아무것도 아닌 것에서 나오는 것이 있다. 0이다. 0은 아무것도 아닌 것에서 나오고 1이 0에서 나오고 그리하여 모든 수가 0과 1에서 나오는 것이다.  

요즘 신문이나 티브이에서 자주 나오는 '에이아이(AI)'나 빅데이터(Big Data)에선 방대한 양의 자료를 컴퓨터로 분석하여 필요한 정보를 뽑는다. 정보의 기본단위는 비트(bit,binary digit)인데 0이나 1의 값을 가질 수 있고 8비트가 모여 1바이트를 이룬다. 빅데이터의 양은 테라바이트 (10의 12승), 페타바이트 (10의 15승), 요타바이트 (10의 24승) 등의 큰 수인데 1에 0이 24개 붙은 '요타바이트'는 우리가 써온 억, 조, 경 등등 큰 수 단위로 말하면 경의 억 배가 되는 큰 수 “자“다. 이런 수도 0에서 나온 수이다. “아 누구인가/ 아무것도 없는 것이 있음을 알고/ 맨 처음 그 이름을 붙인 이는”이란 시구가 절로 나온다. 

사실 수학에서도 0을 정의하는 것이 쉽지 않다. 대학교 시절 0은 무엇이고 1은 무엇이냐고 묻는 친구에게 대답을 못해 쩔쩔맨 일이 있었다. 아니 수학을 한다는 녀석이 0과 1도 모른단 말이냐? 하며 껄껄 웃던 친구에게 대답하려고 읽기 시작한 수학 기초론과 수리 철학책을 통해 현대 수학에서는 수가 무엇인지를 집합의 개념을 통해 정의한다는 것을 알았다. 집합을 그릇, 두께가 없는 경계만 있는 추상적인, 이라고 바꾸어 보면 수학이 전공이 아닌 분들이 이해하기 쉬울 것 같다.  

공간에 아무것도 없다는 것은 공간이 존재함을 전제로 하는 것이다. 이 공간을 담는 그릇을 '집합'(set)이라 부르는데 아무것도 없는 집합을 공집합(empty set)이라 한다. 그릇에 담긴 것을 원소라 부르는데 공집합에 있는 원소의 개수를 “0”이라 부른다. 여기에 0이란 이름이 처음 나온다. 공집합 즉 '빈 그릇'은 원소는 없지만, 그릇으로 존재하게 되는 것이다. 무의 존재이다. 우주를 커다란 그릇이라고 생각하면 아무것도 없는 허(虛)의 상태가 공집합이다. 담을 것이 없는 그릇은 클 필요가 없다. 아니 무한히 클 수도 있다. 빅뱅의 시작은 크기가 0인 우주에서 시작하니까. 

공집합을 원소로 삼는 '공집합의 집합'을 생각하자. 빈 그릇을 담은 그릇의 원소는 하나, '공집합'이다. 공집합에서 시작하여 원소가 하나인 집합을 만들 수 있는 것이다. '공집합의 집합'의 원소와 일대일로 대응시킬 수 있는 집합은 모두가 원소를 하나씩만 가진다. 그러한 모든 집합의 집합을 1이라 정의한다. 풀어 말하면 숫자 1은 원소가 하나인 집합들의 집합이다. 우리가 먼지 '한' 톨이나 사과 '한' 알 혹은 '한' 사람에서 말하는 하나의 개념이 같은 것인지는 쉽게 증명할 수 없다.'백마비마론'은 이런 문제를 생각하다 나온 말이다. 그러므로 모든 하나를 아우르는 개념이 되어야 하는 1의 정의는 모든 한 개로 구성된 집합의 집합이다. 

빈 그릇과 빈 그릇을 담은 그릇을 다른 그릇에 담으면 그릇의 원소는 두 개다. 이 두 원소를 모은 그릇을 '둘집합'이라 하자. 숫자 2는 이 '둘집합'과 원소를 일대일로 대응시킬 수 있는 모든 집합을 모은 집합 즉 두 개의 원소를 갖는 모든 집합을 아우르는 집합으로 정의한다. 셋, 넷, 등등의 정의도 비슷하게 한다. 이렇게 0에서 출발하면 하나, 둘, 셋,…등의 수를 정의할 수 있고 하나 다음은 둘, 등등 순서도 정할 수 있다. 수의 창조론은 “태초에 아무것도 없었다. 아무것도 없는 것에서 하나가 나오고 둘이 나오고…”라고 시작되어야 한다. 

수의 시작이 0이라 한다면 그 끝은 어딜까? 대답은 '없다'이다. 수에는 항상 다음 수가 있기 때문이다. 다음 수의 반대가 되는 앞의 수는 하나를 뺀다는 개념이 필요하다. 없는 것에서 하나를 어떻게 빼냐고 부족함은 존재가 될 수 없다고 생각한 때도 있었지만 부족함을 존재로 보면서 음수를 발견하게 되었다. 그 뒤 '모든 있는 것에는 시작과 끝이 있다'라는 말이 더 이상 진실이 되지 않게 되었다. 어떤 수도 그 앞의 수를 가지기 때문이다. '0'에서 시작은 했지만, 시작도 없고 끝도 없는 수의 세계다. 시의 세계는 어떠할까?


댓글목록

등록된 댓글이 없습니다.

  • RSS
KTN 칼럼 목록
    박운서 CPA는 회계 / 세무전문가이고 관련한 질의는 214-366-3413으로 가능하다.Email : swoonpak@yahoo.com2625 Old Denton Rd. #508Carrollton, TX 75007바다건너 고국은 민심에 올라타서 수평적 당정 관계를 기…
    회계 2024-08-02 
    안녕하세요 구독자 여러분. 오늘은 세계적으로 사랑받는 소스중에 하나인 굴소스에 대해서 이야기 해보겠습니다.굴소스란 굴에서 나오는 진한 국물과 굴을 곱게 갈아서 소금, 간장, 전분, 감미료 등과 혼합하여 걸쭉하게 만들고 아미노캐러멜로 색을 입한 중국 광동식 소스를 말합니…
    리빙 2024-08-02 
    수요일 새벽입니다. 창가에 비치는 달라스 북쪽의 한적한 도시의 불빛은 아련히 타오르는 촛불처럼 희미하게 방안의 한쪽을 비치고 있습니다. 너무나도 멀리 떨어져 있어 금방이라도 사라질 것만 같은 존재들에게 금방 마음을 빼앗길 것만 같은 목마름에 프렌치 프레스로 깊게 내린 …
    여행 2024-08-02 
    안녕하세요! 올해 역시 여름은 덥습니다. 오래 전과 비교하면 최근의 여름은 다소 더 습하지 않은가 싶습니다. 미디어의 발달로 저희는 뜻하지 않아도 많은 정보를 받을 수 있는 세상에 살고 있습니다. 우리가 먹는 식품도 이 정보의 홍수에 빠질 수 없는데요. 오늘은 세상에서…
    리빙 2024-07-26 
    이번 주 휴람 의료정보에서는 0~6세의 영유아에게 발생하고 있는 수족구병에 대해 휴람 의료네트워크 H+양지병원 소아청소년과 양 무열 전문의의 도움을 받아 자세히 알아보고자 한다.최근 0~6세 영유아 수족구병 환자가 크게 늘면서 예방 관리에 비상이 걸렸다. 수족구병은 주…
    리빙 2024-07-26 
    678-972-3481David@IMSglobalmobility.comEmory University 법학박사한동대학교 국제법 석사Immigration Mobility Solutions 파트너 변호사미국 Fortune 500 기업 및 다국적기업 이민법 자문최근 몇 개월간…
    리빙 2024-07-26 
    우리는 때때로 미래를 알수 있는 능력이 있다면 얼마나 좋을까 하는 생각을 해 본다. 그러나 미래를 알수 없는 것이 우리의 현실이기에 우리는 최선을 다해서 오늘을 살아가며 한편으로 미래도 준비 해야 하는 것이다. 현실에 너무 치우쳐서 미래를 무시 해서도 안되고 미래에 너…
    리빙 2024-07-26 
    여행 중에 생각지 못했던 아름다운 도시를 만나 그곳에서 스쳐 지나가는 여행자들과 삶의 이야기를 공유할 수 있다면 이것보다 여행에 멋진 스토리가 있을까요? 삭막할 것만 같았던 도시에서 정겨운 카페를 만나고 여행의 피로를 내려놓은 공간에서 향기로운 커피를 가득 머그잔에 넣…
    여행 2024-07-26 
    공인회계사 서윤교서비스에 대한 보수를 주고 받을 때 두 사람의 관계는 고용주(Employer)와 종업원(Employee) 또는 고용주와 독립계약자(Independent Contractor) 관계가 성립된다. 사실은 간단한 것 같으면서도 현실에서는 상당히 혼란을 가져다 …
    회계 2024-07-26 
    ◈ 제주 출신◈ 연세대, 워싱턴대 통계학 박사◈ 버지니아 의과대학 교수, 텍사스 대학 , (샌안토니오) 교수, 현 텍사스 대학 명예교수◈ 미주 문학, 창조 문학, 미주 중앙일보 신춘문예를 통해 등단◈ 무원 문학상, 미주 가톨릭문학상◈ 에세이집 &lt;순대와 생…
    문학 2024-07-26 
    지난 컬럼에서 교통사고를 대처하기 위해 평상시에 준비되어 있어야 할 사항들에 대한 정보를 나누었고,이번에는 직접적으로 사고를 당했을 때 챙겨야 할 사항에 대해서 이야기를 해 보려고 한다.교통사고란 늘 갑작스럽게 일어나게 되기 때문에 대부분의 사람들이 당황을 해서 대처법…
    리빙 2024-07-19 
    대통령의 도시로 알려진 사우스 다코타(South Dakota) 주에서 두번째로 큰 도시인 래피드 시티(Rapid City)를 출발하여 와이오밍(Wyoming)주의 옐로우스톤 국립공원(Yellowstone National Park)으로 가기 위해 서둘러 아침을 먹고 숙소…
    여행 2024-07-19 
    상업용 투자 전문가에드워드 최문의: 214-723-1701Email: edwardchoirealty@gmail.comfacebook.com/edwardchoiinvestments어떤 사람은 수익을 올리고 돈을 버는데 어떤 사람은 원금을 잃고 실패한다. 남들보다 정보가 …
    부동산 2024-07-19 
    아크로 폴리스의 중심부인 파르테논 신전은 아테네의 전경이 한 눈에 보이는 언덕위에 세워져있다. 이 신전은 기원전 5세기 경에 델로스동맹의 수장 페리 클래스가 페르시아 침략을 물리친 기념으로 건립했는데, 아테네의 수호신인 아테나 여신에게 바쳐진 신전이다. 파르테논은 ‘처…
    문학 2024-07-19 
    박운서 CPA는 회계 / 세무전문가이고 관련한 질의는 214-366-3413으로 가능하다.Email : swoonpak@yahoo.com2625 Old Denton Rd. #508Carrollton, TX 75007바다건너 고국은 집권여당의 당대표 선출을 앞두고 그야말…
    회계 2024-07-19 

검색